RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice

نویسندگان

  • Kensei Taguchi
  • Sho-Ichi Yamagishi
  • Miyuki Yokoro
  • Sakuya Ito
  • Goh Kodama
  • Yusuke Kaida
  • Yosuke Nakayama
  • Ryotaro Ando
  • Nana Yamada-Obara
  • Katsuhiko Asanuma
  • Takanori Matsui
  • Yuichiro Higashimoto
  • Craig R Brooks
  • Seiji Ueda
  • Seiya Okuda
  • Kei Fukami
چکیده

The mineralocorticoid receptor (MR) and its downstream signaling play an important role in hypertensive renal injury. The interaction of advanced glycation end products (AGE) with their receptor (RAGE) is involved in the progression of renal disease. However, the pathological crosstalk between AGE-RAGE axis and MR system in kidney derangement remains unclear. We screened DNA-aptamer directed against RAGE (RAGE-apt) in vitro and examined its effects on renal injury in uninephrectomized deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mice. RAGE, GTP-bound Rac-1 (Rac1), and MR were co-localized in the podocytes of DOCA mice. The deletion of RAGE gene significantly inhibited mesangial matrix expansion and tubulointerstitial fibrosis in DOCA mice, which was associated with the reduction of glomerular oxidative stress, MR, Rac1, and urinary albumin excretion (UAE) levels. RAGE-apt attenuated the increase in carboxymethyllysine (CML), RAGE, nitrotyrosine, Rac1, and MR levels in the kidneys and reduced UAE in DOCA mice. Aldosterone (Aldo) increased nitrotyrosine, CML, and RAGE gene expression in murine podocytes, whereas CML stimulated MR and Rac1 levels, which were blocked by RAGE-apt. The present study indicates the crosstalk between the AGE-RAGE axis and Aldo-MR system, suggesting that RAGE-apt may be a novel therapeutic tool for the treatment of MR-associated renal diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deoxycorticosterone Acetate/Salt-Induced Cardiac But Not Renal Injury Is Mediated By Endothelial Mineralocorticoid Receptors Independently From Blood Pressure.

Chronic kidney disease has a tremendously increasing prevalence and requires novel therapeutic approaches. Mineralocorticoid receptor (MR) antagonists have proven highly beneficial in the therapy of cardiac disease. The cellular and molecular events leading to cardiac inflammation and remodeling are proposed to be similar to those mediating renal injury. Thus, this study was designed to evaluat...

متن کامل

CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension

Inflammation plays an important role in the pathogenesis of hypertensive kidney disease. However, the molecular mechanisms underlying the induction of inflammation are not completely understood. We have found that CXCL16 is induced in the kidney in deoxycorticosterone acetate (DOCA)-salt hypertension. Here we examined whether CXCL16 is involved in DOCA-salt-induced renal inflammation and fibros...

متن کامل

Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension.

To determine whether the transient receptor potential vanilloid type 1 (TRPV1) channel provides protection against hypertension-induced renal damage, hypertension was induced by uninephrectomy and by giving deoxycorticosterone acetate (DOCA)-salt in wild-type (WT) and TRPV1-null mutant (TRPV1-/-) mice. Mean arterial pressure, as determined by radiotelemetry, increased significantly and reached ...

متن کامل

Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension.

Inhibition of soluble epoxide hydrolase (sEH) has been shown to be renal protective in rat models of salt-sensitive hypertension. Here, we hypothesize that targeted disruption of the sEH gene (Ephx2) prevents both renal inflammation and injury in deoxycorticosterone acetate plus high salt (DOCA-salt) hypertensive mice. Mean arterial blood pressure (MAP) increased significantly in the DOCA-salt ...

متن کامل

Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice.

BACKGROUND The genetic background may exert important modifying effects on the course and severity of experimental kidney diseases in mice. We investigated its influence on the development of hypertension and renal injury following treatment with deoxycorticosterone acetate (DOCA) salt in several mouse strains. METHODS Four mouse strains were used for comparison: 129/Sv, C57BL/6 and F1 and F2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018